Skip to content

More Evidence The Medieval Warm Period Was Global

Oxygen 16/18 isotope ratios show the Medieval Warm Period was global – all the way to Antarctica

Despite this poorly written press release with the “topsy-turvy” first paragraph written by some PR person at Syracuse University who doesn’t even mention the name of the paper, there’s some interesting science in the paper once you figure out what the name of the paper is. Unfortunately, this is published by Elsevier, and like a growing number of people in the scientific community (8500+ now), I refuse to purchase anything from Elsevier (especially when they want $40 to read a paper already funded by taxpayers) since they pulled that stunt trying to lobby our legislature. Hopefully the authors themselves will liberate this important paper and put it on one of their own websites.  (Update: I’ve been in touch with Judy L. Holmes of Syracuse who has been very gracious. It seems Eurekalert botched the press release, excluding important info and that is now being corrected) – Anthony

Scientists use rare mineral to correlate past climate events in Europe, Antarctica

New study published in April issue of Earth and Planetary Science Letters

The first day of spring brought record high temperatures across the northern part of the United States, while much of the Southwest was digging out from a record-breaking spring snowstorm. The weather, it seems, has gone topsy-turvy. Are the phenomena related? Are climate changes in one part of the world felt half a world away?

To understand the present, scientists look for ways to unlock information about past climate hidden in the fossil record. A team of scientists led by Syracuse University geochemist Zunli Lu has found a new key in the form of ikaite, a rare mineral that forms in cold waters. Composed of calcium carbonate and water, ikaite crystals can be found off the coasts of Antarctica and Greenland.

“Ikaite is an icy version of limestone,” say Lu, assistant professor of earth sciences in SU’s College of Arts and Sciences. “The crystals are only stable under cold conditions and actually melt at room temperature.”

It turns out the water that holds the crystal structure together (called the hydration water) traps information about temperatures present when the crystals formed. This finding by Lu’s research team establishes, for the first time, ikaite as a reliable proxy for studying past climate conditions. The research was recently published online in the journal Earth and Planetary Science Letters and will appear in print on April 1. Lu conducted most of the experimental work for the study while a post-doctoral researcher at Oxford University. Data interpretation was done after he arrived at SU.

The scientists studied ikaite crystals from sediment cores drilled off the coast of Antarctica. The sediment layers were deposited over 2,000 years. The scientists were particularly interested in crystals found in layers deposited during the “Little Ice Age,” approximately 300 to 500 years ago, and during the “Medieval Warm Period,” approximately 500 to 1,000 years ago. Both climate events have been documented in Northern Europe, but studies have been inconclusive as to whether the conditions in Northern Europe extended to Antarctica.

Ikaite crystals incorporate ocean bottom water into their structure as they form. During cooling periods, when ice sheets are expanding, ocean bottom water accumulates heavy oxygen isotopes (oxygen 18). When glaciers melt, fresh water, enriched in light oxygen isotopes (oxygen 16), mixes with the bottom water. The scientists analyzed the ratio of the oxygen isotopes in the hydration water and in the calcium carbonate. They compared the results with climate conditions established in Northern Europe across a 2,000-year time frame. They found a direct correlation between the rise and fall of oxygen 18 in the crystals and the documented warming and cooling periods.

“We showed that the Northern European climate events influenced climate conditions in Antarctica,” Lu says. “More importantly, we are extremely happy to figure out how to get a climate signal out of this peculiar mineral. A new proxy is always welcome when studying past climate changes.”

###

An ikaite record of late Holocene climate at the Antarctic Peninsula

http://www.sciencedirect.com/science/article/pii/S0012821X12000659

Zunli Lu, Rosalind E.M. Rickaby, Hilary Kennedy, Paul Kennedy, Richard D. Pancost, Samuel Shaw, Alistair Lennie, Julia Wellner, John B. Anderson

Abstract

Calcium carbonate can crystallize in a hydrated form as ikaite at low temperatures. The hydration water in ikaite grown in laboratory experiments records the δ18O of ambient water, a feature potentially useful for reconstructing δ18O of local seawater. We report the first downcore δ18O record of natural ikaite hydration waters and crystals collected from the Antarctic Peninsula (AP), a region sensitive to climate fluctuations. We are able to establish the zone of ikaite formation within shallow sediments, based on porewater chemical and isotopic data. Having constrained the depth of ikaite formation and δ18O of ikaite crystals and hydration waters, we are able to infer local changes in fjord δ18O versus time during the late Holocene. This ikaite record qualitatively supports that both the Medieval Warm Period and Little Ice Age extended to the Antarctic Peninsula.