A recent paper published in the Journal of Climate finds that climate models grossly underestimate cooling of the Earth’s surface due to clouds. According to the authors, “Coupled model intercomparison project (CMIP3) simulations of the climate of the 20th century show 40±20 W m−2 too little net cloud radiative cooling at the surface. Simulated clouds have correct radiative forcing when present, but models have ~50% too few clouds.”
By way of comparison, the 40 W m-2 underestimate of cooling from clouds is more than 10 times the alleged warming from a doubling of CO2 concentrations [3.7 W m-2].
As Dr. Roy Spencer points out in his book,
“The most obvious way for warming to be caused naturally is for small, natural fluctuations in the circulation patterns of the atmosphere and ocean to result in a 1% or 2% decrease in global cloud cover. Clouds are the Earth’s sunshade, and if cloud cover changes for any reason, you have global warming — or global cooling.”
This paper and a host of others demonstrate that many of the key assumptions in climate models have been falsified by observations, therefore, the model predictions are also false.
Observations of stratocumulus clouds and their effect on the eastern Pacific surface heat budget along 20°S
Abstract |
---|
Cloud base heights rise with longitude from 1.0 km at 75°W to 1.2 km at 85°W in the mean, but the slope varies from cruise to cruise. Cloud base-lifting condensation level (CB-LCL) displacement, a measure of decoupling, increases westward. At night CB-LCL is 0-200 m, and increases 400 m from dawn to 16 h local time, before collapsing in the evening.