Anyone advocating a 50% reduction in emissions by 2030 is engaging in a form of climate theater, full of drama but not much suspense.
Last year, the Intergovernmental Panel on Climate Change (IPCC) reported that “limiting global warming to 1.5°C would require rapid, far-reaching and unprecedented changes in all aspects of society.” Specifically, “Global net human-caused emissions of carbon dioxide (CO2) would need to fall by about 45 percent from 2010 levels by 2030, reaching ‘net zero’ around 2050.” Since then, many advocates and policy makers have proposed that target as a political goal.
Here I’ll show you the simple mathematics of what achieving the 2030 target entails. The evidence shows clearly that the world is far from being on a path that will come anywhere close to that goal. That is not an opinion, it is just math.
Of course, climate change poses risks to our future, and aggressive mitigation and adaptation policies make good sense. So getting policy making right is important.
Let’s begin with a few key numbers as starting points. According to the 2019 BP Statistical Review of World Energy, in 2018 the world consumed in total almost 14,000 million tonnes of oil equivalent (mtoe). That energy supports the lives, hopes, aspirations of more than 7 billion people.
Like wealth, energy consumption is deeply unequal around the world, and many who do not have access to a full range of energy products and services are working hard to secure that access. So we should expect energy demand to continue to grow over the next decade. From 2000 to 2018, according to BP, consumption grew at about 2.2% per year, and ranged from a drop of 1.4% in 2009 to an increase of 4.9% in 2004. In the analysis below, I use an assumed 2.2% growth per year to 2030.
Here I focus on carbon dioxide from the consumption of fossil fuels, coal, natural gas and oil, and ignore emissions from the use of land. When combusted, fossil fuels emit different amounts of carbon dioxide. Coal by far emits the most. In 2018 about 27% of total global energy consumption came from coal, but according to the Global Carbon Project, coal accounts for about 40% of carbon dioxide emissions from fossil fuels.
To simplify the analysis, I assume that emissions reduction targets will be met through reductions in fossil fuel consumption which occur across all fossil fuels. That allows us to equate a reduction in fossil fuel consumption with a reduction in carbon dioxide emissions. It also keeps us from misinterpreting a reduction in emissions from a switch from coal to natural gas. If the ultimate goal is net-zero carbon dioxide, then eventually all energy consumption will have to be carbon-free, meaning that carbon dioxide-emitted natural gas will have to also be eliminated.